小新叶

 找回密码
 立即注册

QQ登录

只需一步,快速开始

mito
查看: 2009|回复: 5

2017-2018最新公务员题海实战班视频教程百度云盘下载(共8讲)

[复制链接]

5万

主题

5万

帖子

16万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
165222
发表于 2017-8-11 09:51:45 | 显示全部楼层 |阅读模式

QQ图片20170811095143.png



鸡兔同笼的变形

在数学运算中,还有一些问题,表面看不符合鸡兔同笼的特征,实际上通过转化,依旧可以按照鸡兔同笼问题的解题思路来快速解题。解题步骤为:①找出鸡、兔脚数;②找出总头数、总脚数;③套用公式。

【例题4】甲、乙两店相距7000 米,妈妈从甲店出发去乙店购物,开始以每分钟50 米的速度前行,后来改乘汽车,每分钟行300 米,结果共用30 分钟到达乙店,求妈妈是在离甲店多远的地方改乘汽车的中公.教育版权?

A.200米 B.400 米 C.600 米 D.800 米

中公解析:要求离甲店多远的地方乘汽车,求出步行的时间,再乘步行速度即可。

要求步行的分钟数,可假设全为乘汽车,套用设兔求鸡公式,步行时间=(300×30-7000)÷(300—50)=8分钟。所以妈妈是在离甲店50×8=400米的地方改乘汽车的。

运用假设法巧解鸡兔同笼问题

鸡兔同笼问题历来是各类考试中比较常考的题型,由此可见,这类问题是广大考生必须要着重复习的一类题目。今天,中公教育专家就鸡兔同笼问题中的一类方法——假设法向广大考生讲解其中的奥秘

大家复习鸡兔同笼问题的过程中,首先要了解“鸡兔同笼”问题的结构特点,即题目中必须包含两个不同的主体,或者一个主体的两种不同属性。两个主体或属性之间,必须有两种和差关系,和差关系是联系两个主体或属性的关键条件。这时候我们可以通过用方程法、假设法解决问题。“假设法”解题的思路是:假设全为鸡,按照头数计算出脚的只数,然后与实际的脚数对比,缺少的脚数就是将兔子假设成鸡而减少的总脚数,再除以每只兔子减少的脚数,则为兔子的数量。

公式:兔数=(总脚数-2×总头数)÷2

“得失”问题公式:损失数=(每件应得×总件事-实得数)÷(每件应得+每件损失)

【例1】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?

A.8 B.10 C.12 D.15

【答案】D

【中公解析】解法1:根据题意,设甲教室当月举办了x次培训,乙教室当月举办了27-x次培训,则x+y=27、(5×10)x+(9×5)y=1290当然,这道题目可以进行解方程求解,但是数字比较大,运算量较大。

解法2:用奇偶特性就非常简单,直接秒杀。由,50x+45y=1290,1290是偶数,50x是偶数,则45y一定是偶数,即y是偶数。又,因为 x+y=27,27是奇数,则x一定是奇数,选D项。解法3:若全在甲教室培训,总共可以培训50×27=1350人次,但实际只有1290人次,而甲教室比乙教室多培训5人,所以乙教室培训的次数为(1350-1290)5=12次,则可以得出甲的为15次。



游客,如果您要查看本帖隐藏内容请回复


楼主热帖
回复

使用道具 举报

0

主题

151

帖子

403

积分

中级会员

Rank: 3Rank: 3

积分
403
发表于 2017-8-30 13:59:23 | 显示全部楼层
1111111111
回复 支持 反对

使用道具 举报

0

主题

114

帖子

293

积分

中级会员

Rank: 3Rank: 3

积分
293
发表于 2017-8-30 21:24:51 | 显示全部楼层
鸡兔同笼的变形
在数学运算中,还有一些问题,表面看不符合鸡兔同笼的特征,实际上通过转化,依旧可以按照鸡兔同笼问题的解题思路来快速解题。解题步骤为:①找出鸡、兔脚数;②找出总头数、总脚数;③套用公式。
【例题4】甲、乙两店相距7000 米,妈妈从甲店出发去乙店购物,开始以每分钟50 米的速度前行,后来改乘汽车,每分钟行300 米,结果共用30 分钟到达乙店,求妈妈是在离甲店多远的地方改乘汽车的中公.教育版权?
A.200米 B.400 米 C.600 米 D.800 米
中公解析:要求离甲店多远的地方乘汽车,求出步行的时间,再乘步行速度即可。
要求步行的分钟数,可假设全为乘汽车,套用设兔求鸡公式,步行时间=(300×30-7000)÷(300—50)=8分钟。所以妈妈是在离甲店50×8=400米的地方改乘汽车的。
运用假设法巧解鸡兔同笼问题
鸡兔同笼问题历来是各类考试中比较常考的题型,由此可见,这类问题是广大考生必须要着重复习的一类题目。今天,中公教育专家就鸡兔同笼问题中的一类方法——假设法向广大考生讲解其中的奥秘
大家复习鸡兔同笼问题的过程中,首先要了解“鸡兔同笼”问题的结构特点,即题目中必须包含两个不同的主体,或者一个主体的两种不同属性。两个主体或属性之间,必须有两种和差关系,和差关系是联系两个主体或属性的关键条件。这时候我们可以通过用方程法、假设法解决问题。“假设法”解题的思路是:假设全为鸡,按照头数计算出脚的只数,然后与实际的脚数对比,缺少的脚数就是将兔子假设成鸡而减少的总脚数,再除以每只兔子减少的脚数,则为兔子的数量。
公式:兔数=(总脚数-2×总头数)÷2
“得失”问题公式:损失数=(每件应得×总件事-实得数)÷(每件应得+每件损失)
【例1】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?
A.8 B.10 C.12 D.15
【答案】D
【中公解析】解法1:根据题意,设甲教室当月举办了x次培训,乙教室当月举办了27-x次培训,则x+y=27、(5×10)x+(9×5)y=1290当然,这道题目可以进行解方程求解,但是数字比较大,运算量较大。
解法2:用奇偶特性就非常简单,直接秒杀。由,50x+45y=1290,1290是偶数,50x是偶数,则45y一定是偶数,即y是偶数。又,因为 x+y=27,27是奇数,则x一定是奇数,选D项。解法3:若全在甲教室培训,总共可以培训50×27=1350人次,但实际只有1290人次,而甲教室比乙教室多培训5人,所以乙教室培训的次数为(1350-1290)5=12次,则可以得出甲的为15次。
回复 支持 反对

使用道具 举报

0

主题

338

帖子

1180

积分

超级VIP

Rank: 10Rank: 10Rank: 10

积分
1180
发表于 2017-9-12 20:38:53 | 显示全部楼层
111111111111111111
回复 支持 反对

使用道具 举报

0

主题

3054

帖子

6520

积分

论坛元老

Rank: 6Rank: 6

积分
6520
发表于 2018-9-7 16:20:23 | 显示全部楼层
谢谢谢谢谢谢谢谢
回复 支持 反对

使用道具 举报

0

主题

4009

帖子

8056

积分

论坛元老

Rank: 6Rank: 6

积分
8056
发表于 2020-2-13 15:39:54 | 显示全部楼层
看帖回帖是美德!谢谢虚拟宝库网分享!
回复 支持 反对

使用道具 举报

快速回复changefastreply
看帖回帖是美德!
不错不错
支持一下啦
不知该说些什么
支持一下:lol
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小新叶

GMT+8, 2024-12-22 12:04 , Processed in 0.245424 second(s), 45 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表